Главная Обратная связь В избранное

Мир непознанного - Onua.org

Onua.org - этот сайт создан с целью ознакомления пользователя с миром непознанного, новостями технологий, космических открытий и загадок нашей планеты Земля, НЛО, Видео , Фото, Очевидцы, Загадки истории и древних цивилизаций.
onua.org » Гипотезы » Физика невозможного - Телепортация
Узнать больше о 2012 годе
Миссия Curiosity
Discovery Channel
Discovery World
Discovery Science
Animal Planet
Nat Geo WILD
National Geographic Channel
Viasat History
Viasat Explorer
Календарь новостей

Присоединяйтесь

Популярное на Onua.org
ФОТО
?=t('Новости аномалий и неопознанных явлений')?>
Узнать больше о планете Нибиру
Просмотров: 3459
Физика невозможного - ТелепортацияТелепортация, или способность мгновенно перемещать людей и предметы из одного места в другое, — это умение, которое может изменить направление развития цивилизации и повлиять на судьбы стран и народов. Так, телепортация раз и навсегда изменила бы принципы и правила ведения войны: владея этим искусством, военачальники могли бы мгновенно закидывать войска в тыл противника или просто телепортировать вражеское руководство в удобное место и захватить его. Транспортная система сегодняшнего дня — автомобили, корабли, самолеты и железные дороги вместе с обслуживающими их многочисленными отраслями промышленности — сразу устарели бы; мы могли бы просто телепортироваться из дома на работу и мгновенно перекидывать грузы и товары в нужное место. Отпуска перестали бы быть проблемой — мы легко телепортировались бы прямо к месту отдыха, Телепортация изменила бы все.

Самые ранние упоминания о телепортации можно обнаружить[7] в религиозных текстах, например в Библии, где духи то и дело переносят людей с места на место. К примеру, это место из Деяний апостолов Нового Завета предполагает, по всей видимости, телепортацию Филиппа из Газы в Азот.

«Когда же они вышли из воды, Дух Святый сошел на евнуха, а Филиппа восхитил Ангел Господень, и евнух уже не видел его и продолжал путь, радуясь. А Филипп оказался в Азоте и, проходя, благовествовал всем городам, пока пришел в Кесарию» (Деяния 8:39-40).

Телепортация — среди прочих трюков и иллюзий — входит в репертуар любого мага: кролики из шляпы, карты из рукава, монеты из-за уха ничего не подозревающего зрителя. Один из самых впечатляющих трюков недавнего времени — исчезновение слона на глазах изумленной аудитории. Выглядит это следующим образом. Гигантского слона весом в несколько тонн помещают в клетку. Взмах волшебной палочки — и слон исчезает, к немалому изумлению публики. (Конечно, на самом деле слон никуда не девается. Трюк осуществляется при помощи зеркал. Клетка, в которую помещают слона, не простая. Позади каждого прута имеется зеркало — длинное узкое вертикальное зеркало. Каждое из этих зеркал может поворачиваться вокруг вертикальной оси. В начале номера, когда зеркала развернуты поперек и как бы спрятаны за прутьями клетки, зрителям их не видно — зато видно слона в клетке. Зато когда зеркала по команде иллюзиониста поворачиваются и встают под углом 45° к аудитории, изумленным зрителям остается только вглядываться в отраженное изображение боковой стенки клетки, за которой нет никакого слона.)
Телепортация и научная фантастика

Первое упоминание о телепортации в научно-фантастическом произведении мы находим в рассказе Эдварда Пейджа Митчелла «Человек без тела», опубликованном в 1877 г. В этом рассказе некий ученый открыл способ разобрать кошку на атомы я передать их по телеграфным проводам. К несчастью, в тот момент, когда ученый пытался телепортироваться сам, прекратилось электропитание. В результате успешно телепортировалась только его голова.

Сэр Артур Конан Дойл, создатель знаменитого Шерлока Холмса[8], был буквально очарован идеей телепортации. Написав большое количество детективных рассказов и романов про приключения Шерлока Холмса, он устал от своего героя и в конце концов прикончил его, заставив вместе с профессором Мориарти упасть в ущелье у Рейхенбахского водопада. Но возмущение читателей оказалось столь велико, что Дойлу пришлось воскресить сыщика. Оказавшись не в состоянии избавиться от Шерлока Холмса, Дойл вместо этого решил создать совершенно нового героя. Им стал профессор Челленджер, практически двойник Холмса. Оба героя обладали острым умом и наблюдательностью и любили разгадывать загадки. Но если Холмс раскрывал запутанные криминальные дела при помощи холодной дедуктивной логики, то профессор Челленджер исследовал темный мир спиритуализма и паранормальных явлений, включая и телепортацию.

В романе «Дезинтеграционная машина», опубликованном в 1927 г., профессор знакомится с изобретателем машины, способной разобрать человека, а затем собрать его заново где-нибудь в другом месте. Но затем изобретатель хвастливо заявляет, что в дурных руках его машина может по нажатию кнопки уничтожать целые города с миллионами жителей. Профессор Челленджер в ужасе. Роман заканчивается тем, что он при помощи машины разбирает изобретателя и покидает лабораторию, «позабыв» собрать его заново.

Немного позже телепортацию открыл для себя и Голливуд. Вышедший в 1958 г. фильм «Муха» наглядно демонстрирует, что может произойти, если процесс телепортации пойдет неправильно. Некий ученый успешно телепортирует себя в пределах комнаты, но по несчастной случайности его атомы перемешиваются с атомами мухи, случайно попавшей в телепортационную лабораторию. В результате ученый превращается в гротескное чудовище — получеловека, полумуху. (В 1986 г. на экраны вышел ремейк этого фильма с Джеффом Голдблюмом в главной роли.)

Сериал «Звездный путь» сделал телепортацию заметным явлением массовой культуры. Его создатель Джин Родденберри вынужден был ввести телепортацию в сюжет, поскольку бюджет студии Paramount не предусматривал дорогостоящих спецэффектов, связанных с имитацией старта и посадки ракетных кораблей на Земле и отдаленных планетах. Дешевле было просто передать экипаж «Энтерпрайза» к месту назначения получу.

За прошедшие десятилетия ученые успели высказать множество доводов в пользу того, что телепортация в принципе невозможна. Чтобы телепортировать человека, вы должны знать точное расположение каждого атома в живом теле — а это, вероятно, нарушило бы принцип неопределенности Гейзенберга (который утверждает, что невозможно одновременно знать точное положение и скорость электрона). Продюсеры «Звездного пути», склоняясь перед критиками, установили в телепортационной камере «компенсаторы Гейзенберга» — можно подумать, что законы квантовой физики можно было бы исправить при помощи какого бы то ни было дополнительного блока в устройстве телепорта! Но оказывается, создатели фильма вообще поторопились с введением «компенсаторов Гейзенберга». Возможно, ученые и критики прошлых лет все же ошибались.
Телепортация и квантовая теория

В рамках теории Ньютона телепортация откровенно невозможна. Законы Ньютона базируются на представлении о том, что вещество состоит из крошечных твердых бильярдных шариков. Объекты не приходят в движение, если их не толкнуть; объекты не исчезают внезапно и не появляются заново в другом месте.

Но в квантовой теории частицы способны проделывать именно такие фокусы. Законы Ньютона продержались у власти 250 лет и были свергнуты в 1925 г., когда Вернер Гейзенберг, Эрвин Шрёдингер и их коллеги разработали квантовую теорию. Анализируя странные свойства атомов, физики обнаружили, что электрон ведет себя как волна и в кажущейся хаотичности своего движения внутри атома может совершать квантовые скачки.

Теснее всего с представлением о квантовых волнах связан венский физик Эрвин Шрёдингер, создатель знаменитого волнового уравнения, названного его именем, — одного из важнейших уравнений физики и химии. Целые институтские курсы посвящены решению этого знаменитого уравнения; целые стены физических библиотек заняты книгами, в которых подробно исследуются его глубокие следствия. В принципе вся сумма знаний по химии может быть сведена к решениям этого уравнения.

В 1905 г. Эйнштейн показал, что световые волны могут вести себя наподобие частиц; это значит, что они MOiyr быть описаны как пакеты энергии, известные под названием фотонов. Но примерно к 1920 г. Шрёдингеру стало очевидно, что обратное тоже верно: частицы, к примеру электроны, могут вести себя подобно волнам. Эту идею первым высказал французский физик Луи де Бройль, удостоенный за эту гипотезу Нобелевской премии. (Мы в университете наглядно демонстрируем это студентам. Для этого мы выстреливаем электронами в катодную лучевую трубку, в точности такую, как в телевизоре. Электроны проходят через крошечное отверстие, так что на экране вроде бы должна появиться маленькая светлая точка. Вместо этого вы обнаружите там концентрические волнообразные круги — точно такие, какие можно ожидать при прохождении через отверстие волны, а не частицы.)

Как-то Шрёдингер читал лекцию об этом любопытном феномене. Один из присутствовавших в зале коллег-физиков Питер Дебай задал вопрос: «Если электрон можно описать как волну; то как выглядит его волновое уравнение?»

С тех пор как Ньютон создал дифференциальное исчисление, физики описывали любую волну на языке дифференциальных уравнений, поэтому Шредингер воспринял вопрос Дебая как вызов и решил написать дифференциальное уравнение для электронной волны. В том же месяце Шредингер ушел в отпуск, а вернулся уже с готовым уравнением. Как Максвелл в свое время взял физические поля Фарадея и вывел уравнения Максвелла для света, Шредингер взял частицу-волну де Бройля и вывел уравнение Шрёдингера для электронов.

(Историки науки потратили немало усилий, пытаясь выяснить в точности, где был и чем занимался Шрёдингер, когда открыл свое знаменитое уравнение, навсегда изменившее современную физику и химию. Оказалось, что Шредингер был сторонником свободной любви и на отдых часто ездил с женой и любовницами. Он также вел подробный дневник, в который заносил всех своих многочисленных любовниц и сложным шифром обозначал каждую встречу. В настоящее время считается, что те выходные, когда было открыто уравнение, Шредингер провел в Альпах, на вилле «Хервиг», с одной из своих подружек.)

Начав решать свое уравнение для атома водорода, Шредингер, к немалому своему удивлению, обнаружил, что энергетические уровни электронов уже до него были точно установлены и опубликованы другими физиками. После этого он понял, что старая модель атома, принадлежащая Нильсу Бору, — та самая, где электроны носятся вокруг ядра и которую до сих пор рисуют в книгах и рекламных проспектах как символ современной науки — на самом деле неверна. Круговые орбиты электронов вокруг ядра атома необходимо заменить волнами.

Можно сказать, что работа Шрёдингера встряхнула физическое сообщество и, подобно брошенному камню, тоже породила разбегающиеся волны. Физики вдруг обнаружили, что могут заглянуть непосредственно в атом, подробно исследовать волны, из которых состоят его электронные оболочки, и точно предсказать их энергетические уровни.

Но оставался еще один вопрос, который не дает физикам покоя даже сегодня. Если электрон описывается как волна, то что же в нем колеблется? Ответ на этот вопрос дал физик Макс Борн; он сказал, что эти волны представляют собой не что иное, как волны вероятности. Они сообщают только о том, с какой вероятностью вы обнаружите конкретный электрон в определенное время в определенной точке. Другими словами, электрон — это частица, но вероятность обнаружить эту частицу задается волной Шрёдингера. И чем выше волна, тем больше шансов обнаружить частицу именно в этой точке.

Получается, что внезапно в самом сердце физики — науки, которая прежде давала нам точные предсказания и подробные траектории любых объектов, начиная с планет и комет и кончая пушечными ядрами, — оказались понятия шанса и вероятности.

Гейзенберг сумел формализовать этот факт, предложив принцип неопределенности[9] — постулат о том, что невозможно знать точную скорость и точное положение электрона в один и тот же момент. Невозможно точно определить и его энергию в заданный промежуток времени. На квантовом уровне нарушаются все фундаментальные законы здравого смысла: электроны могут исчезать и вновь возникать в другом месте, а также находиться одновременно в нескольких местах.

(По иронии судьбы и Эйнштейн, крестный отец квантовой теории, принимавший участие в революционных преобразованиях 1905 г., и Шрёдингер, автор волнового уравнения, пришли в ужас от появления случайных процессов в фундаментальной физике. Эйнштейн писал: «Квантовая механика вызывает огромное уважение. Но внутренний голос подсказывает мне, что это не то, что нужно. Эта теория многое объясняет, но едва ли приближает нас хоть сколько-то к тайне Бога. По крайней мере о себе могу сказать точно: я убежден, что Он не играет в кости».)

Теория Гейзенберга была революционной и противоречивой, но работала. С ее помощью физикам удалось одним махом объяснить огромное число загадочных явлений, включая законы химии. Объясняя своим аспирантам странность и причудливость квантовой теории, я иногда прошу их рассчитать вероятность того, что атомы их тел вдруг разбегутся и соберутся заново по другую сторону кирпичной стены. Подобная телепортация запрещена в ньютоновской физике, но никак не противоречит законам квантовой механики. Ответ, однако, заключается в том, что такого события пришлось бы ждать до конца жизни вселенной и даже дольше. (Если бы вы при помощи компьютера построили график шрёдингеровой волновой функции для собственного тела, то выяснилось бы, что она очень сильно напоминает само тело, но выглядит как бы чуть-чуть лохматой, так как некоторые из ваших волн расползаются за его пределы во всех направлениях. Некоторые из них достигают даже отдаленных звезд. Поэтому существует все же крошечная вероятность того, что однажды вы вдруг проснетесь на далекой чужой планете.)

Тот факт, что электроны, по-видимому, могут находиться во многих местах одновременно, составляет фундамент всей химии. Мы думаем, что электроны обращаются вокруг ядра атома, как тела миниатюрной Солнечной системы. Но между атомом и Солнечной системой есть принципиальные различия. При столкновении в космосе двух Солнечных систем они неизбежно развалятся, планеты при этом отбросит в разных направлениях. Атомы же, сталкиваясь, часто делятся друг с другом электронами и образуют вполне стабильные молекулы. В старших классах школы учитель часто говорит ученикам про «размазанный электрон», напоминающий продолговатый мяч для регби; он соединяет два атома между собой.

Но вот о чем учителя химии почти никогда не рассказывают ученикам. Электрон, о котором идет речь, вовсе не «размазан» между двумя атомами. На самом деле этот «мяч для регби» представляет вероятность того, что электрон находится одновременно во множестве мест внутри данного объема. Другими словами, вся химия, изучающая и объясняющая строение молекул, из которых состоят наши тела, основана на представлении о том, что электроны могут находиться одновременно в нескольких местах; именно такое «совместное владение» электронами, которые умудряются одновременно принадлежать двум атомам, удерживает на месте атомы в молекулах нашего тела. Без квантовой теории наши молекулы и атомы распались бы в мгновение ока.

Этим причудливым, но принципиальным свойством квантовой теории (тем фактом, что существует ненулевая вероятность даже самых странных событий) воспользовался Дуглас Адаме в своем веселом романе «Автостопом по галактике». Автору нужен был удобный способ носиться по всей галактике, поэтому он придумал «двигатель бесконечной невероятности», «чудесный новый способ преодоления громадных межзвездных расстояний за ничтожнейшую долю секунды без нудного блуждания в гиперпространстве». Его машина позволяет произвольно менять вероятность любого квантового события, так что даже чрезвычайно маловероятные события становятся обычными и привычными. В общем, если хотите отправиться в ближайшую звездную систему, нужно просто изменить вероятность вашей рематериализации именно там,' и все! Дело сделано! Вы мгновенно телепортируетесь в нужное место.

На самом деле квантовые «скачки», столь обычные внутри атома, невозможно легко перенести на крупные объекты вроде людей, состоящие из триллионов и триллионов атомов. Даже если электроны в нашем теле прыгают и скачут с места на место в своем фантастическом путешествии вокруг ядра, их так много, что прыжки усредняются и сглаживаются. Именно поэтому, говоря упрощенно, на нашем уровне вещества представляются твердыми и неизменными.

Итак, хотя на атомном уровне телепортация разрешена, чтобы дождаться подобного странного события на макроскопическом уровне, придется ждать до гибели нашей Вселенной и даже дольше. Но можно ли воспользоваться законами квантовой теории и создать машину для телепортации объектов по требованию, как происходит в научно-фантастических произведениях? Как ни удивительно, ответ однозначен: да, можно.
Эксперимент ЭПР

Ключ к квантовой телепортации кроется в знаменитой работе 1935 г. Альберта Эйнштейна и его коллег Бориса Подольского и Натана Розена. По иронии судьбы трое ученых ставили своей целью раз и навсегда покончить с присутствием вероятности в физике, предложив с этой целью мысленный эксперимент, получивший название эксперимент ЭПР по первым буквам фамилий авторов. (Сокрушаясь по поводу бесспорного экспериментального успеха квантовой теории, Эйнштейн писал: «Чем больший успех имеет квантовая теория, тем глупее она выглядит».)

Если два электрона первоначально колеблются в унисон (такое состояние называется когерентным), то они способны сохранить волновую синхронизацию даже на большом расстоянии друг от друга. Даже если эти электроны окажутся разделены световыми годами, невидимая шрёдингерова волна все равно будет связывать их между собой подобно пуповине. Если с одним из электронов что-то произойдет, то какая-то часть информации об этом событии будет немедленно передана второму. Это явление называется квантовой запутанностью и основано на концепции о том, что когерентные частицы обладают какой-то глубинной связью.

Возьмем (мысленно, разумеется) два когерентных электрона; раз они когерентны, значит, колеблются в унисон, Затем позволим этим электронам разлететься в противоположных направлениях. Каждый электрон подобен вертящемуся волчку, причем его вращение (спин) может быть направлено вверх или вниз. Пусть полный спин системы равняется нулю, так что если известно, что спин одного электрона направлен вверх, то спин другого точно направлен вниз. Согласно квантовой теории перед измерением спин электрона не направлен ни вверх, ни вниз; электрон находится в неопределенном состоянии, он как бы вращается вверх и вниз одновременно. (Стоит вам произвести наблюдение, как волновая функция «схлопывается», оставляя частицу в одном конкретном состоянии из всех возможных.)

Далее измерим спин одного электрона. Скажем, он вращается вверх. Значит, мы мгновенно узнаем, что другой электрон вращается вниз. Даже если электроны разделены в пространстве многими световыми годами, мы будем мгновенно знать спин второго из них, как только измерим спин первого. Мало того, мы получим эту информацию быстрее, чем со скоростью света! Поскольку два наши электрона «запутаны», т.е. их волновые функции колеблются в унисон, эти самые волновые функции связаны невидимой «нитью» или пуповиной. Все, что происходит с одной частицей, автоматически отражается на другой. (В каком-то смысле это означает, что все, что происходит с нами, автоматически и мгновенно влияет на события, происходящие в отдаленных уголках вселенной, ведь наши волновые функции, вероятно, «запутаны» еще с начала времен. В каком-то смысле можно сказать, что существует паутина «запутанности», которая связывает отдаленные уголки вселенной, включая и нас с вами.) Эйнштейн иронически называл это явление призрачным дальнодействием и «доказывал» с его помощью, что квантовая теория неверна, поскольку ничто не может переноситься с места на место быстрее, чем со скоростью света.

Первоначально Эйнштейн считал мысленный эксперимент ЭПР похоронным звоном по квантовой теории. Но в 1980-х гг. Алан Аспект с коллегами провел во Франции реальный эксперимент с двумя детекторами, расположенными на расстоянии 13 м друг от друга. Он измерял спины фотонов, испускаемых атомами кальция, и полученные результаты в точности совпали с положениями квантовой теории. Очевидно, Господь все же играет в кости с нашей Вселенной.

Действительно ли информация в этом случае передается быстрее, чем со скоростью света? Неужели Эйнштейн ошибся и скорость света не является предельной скоростью нашей Вселенной? На самом деле все обстоит не совсем так. Да, информация действительно передается быстрее света, но информация эта случайна, а потому бесполезна. Методом, описанным в эксперименте ЭПР, невозможно передать настоящее послание, скажем, азбукой Морзе, с какой бы скоростью ни передавалась информация.

Знание о том, что некий электрон на другом конце вселенной вращается вниз, бесполезно. Этим методом невозможно передать свежую информацию о биржевых котировках. Приведем наглядный пример. Предположим, что один из наших приятелей всегда носит разноцветные носки, красный и зеленый, не обращая внимания на то, какой цвет окажется на какой ноге. Скажем, мы осматриваем одну ногу и выясняем, что на ней красный носок. Значит, мы узнаем быстрее, чем со скоростью света, что на другой ноге зеленый носок. Информация действительно дошла до нас быстрее света, но она совершенно бесполезна. Этим методом невозможно передать сигнал, который содержал бы неслучайную информацию.

Много лет эксперимент ЭПР приводили как яркий пример торжества квантовой теории, но торжество получалось бесплодным и не давало никакой практической выгоды. До недавнего времени.
Квантовая телепортация

Все изменилось в 1993 г., когда ученые из IBM[10] под руководством Чарльза Беннетта продемонстрировали всем принципиальную возможность телепортировать с использованием эксперимента ЭПР материальные объекты, по крайней мере на атомном уровне. (Точнее говоря, они продемонстрировали возможность передачи полной информации о частице.) За прошедшие годы физики научились передавать фотоны и даже целые атомы цезия. Возможно, через несколько десятилетий ученые смогут телепортировать первую молекулу ДНК и первый вирус.

Квантоваятелепортация использует одну из самых причудливых особенностей эксперимента ЭПР. В своих экспериментах физики начинают с того, что берут два атома, А и С. Предположим, мы хотим телепортировать информацию от атома А к атому С. Для этого мы вводим третий атом В, запутанный с атомом С (т.е. В и С когерентны). Затем атом А вступает в контакт с атомом В и «сканирует» его таким образом, что информационное содержание атома А передается атому В. В ходе этого процесса атомы А и В запутываются. Но поскольку первоначально В был запутан с атомом С, теперь информация, содержавшаяся в А, передается также и в атом С. Результат таков: атом А был телепортирован в атом С, т. е. теперь информационное содержание А идентично информационному содержанию С.

Обратите внимание на то, что информация, содержавшаяся перед началом эксперимента в атоме А, была уничтожена (т.е. после эксперимента мы не получаем двух идентичных копий). Это означает, что если представить себе телепортацию человека, то человек этот должен будет умереть в процессе передачи. Но зато информационное содержание его тела появится где-то в другом месте. Обратите внимание также на то, что атом А как таковой не переместился на позицию атома С. Напротив, С получил от А только информацию, которая в нем содержалась, например характеристики спина и поляризации. (Это не означает, что атом А был разобран и перенесен на другое место. Это означает, что информационное содержание атома А было передано другому атому — С.)

После первого объявления о прорыве между разными группами ученых началось яростное соревнование. Первая историческая демонстрация, в ходе которой осуществлялась телепортация фотонов ультрафиолетового света, состоялась в 1997 г. в Университете Инсбрука. Через год экспериментаторы из Калифорнийского технологического института провели еще более точный эксперимент по телепортации фотонов.

В 2004 г. физики Венского университета сумели телепортировать частицы света на расстояние 600 м под рекой Дунай по оптоволоконному кабелю, установив таким образом новый рекорд. (Сам кабель имел длину 800 м и был протянут под Дунаем ниже системы городской канализации. Передатчик располагался на одном берегу реки, приемник — на другом.)

Одно из возражений, которые выдвигают критики этих экспериментов, заключается в том, что ученые работают с частицами света, фотонами. Пока результат «не тянет» на научную фантастику. Поэтому очень важным стал другой эксперимент 2004 г., когда квантовую телепортацию удалось продемонстрировать уже не на фотонах, а на настоящих атомах. Это шаг в нужном направлении, к созданию реального телепортационного устройства. Физики из Национального института стандартов и технологии в Вашингтоне сумели «запутать» три атома бериллия и передать свойства одного атома другому. Достижение было настолько значительным, что попало на обложку журнала Nature. Другая группа тоже добилась успеха, но уже с атомами кальция.

В 2006 г. произошло еще одно значительное событие: впервые в подобных экспериментах был задействован макроскопический объект. Физики из Института Нильса Бора в Копенгагене и Института Макса Планка в Германии сумели запутать луч света и газ, состоящий из атомов цезия; в этом событии участвовали многие триллионы атомов. После этого они закодировали информацию, содержащуюся в лазерных вспышках, и телепортировали ее атомам цезия через расстояние примерно в полметра. Как пояснил один из исследователей Евгений Ползик, впервые была проведена квантовая телепортация «между светом — носителем информации — и атомами».
Телепортация без запутывания

Исследования в области телепортации стремительно набирают ход. В 2007 г. было сделано еще одно важное открытие. Физики предложили метод телепортации, не требующий запутывания. Вспомним, что запутывание представляет собой наиболее сложный момент квантовой телепортации. Решение этой проблемы могло бы открыть перед телепортацией новые горизонты.

«Речь идет о луче из примерно 5000 частиц, который исчезает в одном месте и появляется в другом», — говорит физик Астон Брэдли из Центра квантовой атомной оптики в Брисбене при Австралийском совете по исследованиям — один из участников разработки нового метода телепортации.

«Мы считаем, что по духу наша схема ближе к первоначальной фантастической концепции», — заявляет он. Суть подхода группы Брэдли в том, что ученые берут пучок атомов рубидия, переводят всю его информацию в луч света, посылают этот луч по оптоволоконному кабелю, а затем воссоздают первоначальный пучок атомов в другом месте. Если заявленные результаты подтвердятся, то будет устранено главное препятствие к реальной телепортации и открыты совершенно новые пути передачи на расстояние все более крупных объектов.

Чтобы новый метод не путали с квантовой телепортацией, доктор Брэдли назвал его классической телепортацией. (Название это отчасти вводит в заблуждение, потому что его метод также опирается на квантовую теорию, но не на запутывание.)

Ключевым моментом этого нового типа телепортации является открытое недавно новое состояние вещества, известное как «конденсат Бозе-Эйнштейна», или КБЭ, которое представляет собой одну из самых холодных субстанций во всей Вселенной.

В природе самую низкую температуру можно обнаружить в открытом космосе; она составляет 3 К, т. е. на три градуса выше абсолютного нуля. (Это благодаря остаточной теплоте Большого взрыва, которая до сих пор заполняет Вселенную.) Но КБЭ существует при температуре от одной миллионной до одной миллиардной градуса выше абсолютного нуля; такую температуру можно получить только в лаборатории.

При охлаждении некоторых форм вещества почти до абсолютного нуля их атомы (все без исключения) сваливаются на самый низкий энергетический уровень и начинают вибрировать в унисон, т. е. становятся когерентными. Волновые функции всех атомов перекрываются, поэтому в каком-то смысле КБЭ напоминает гигантский «сверхатом», причем все составляющие его отдельные атомы колеблются в унисон. Существование этого необычного состояния вещества предсказали Эйнштейн и Шатьендранат Бозе еще в 1925 г., но прошло 70 лет, прежде чем в 1995 г. КБЭ был наконец получен в лабораториях Массачусетского технологического института и Университета Колорадо.

Вот как работает телепортационное устройство Брэдли и его команды. Начинается все с набора суперхолодных атомов рубидия в состоянии КБЭ. Затем на КБЭ направляют пучок атомов (все того же рубидия). Атомы пучка также стремятся перейти в состояние с самой низкой энергией, поэтому они сбрасывают излишки энергии в виде квантов света. Полученный таким образом световой луч посылают по оптоволоконному кабелю. Примечательно, что этот луч содержит всю квантовую информацию, необходимую для описания первоначального пучка вещества (т.е. информацию о расположении и скорости всех его атомов). Пройдя по кабелю, световой луч попадает в уже другой КБЭ, который превращает его в первоначальный поток вещества.

Этот новый метод телепортации ученые считают чрезвычайно многообещающим, так как в нем не задействована запутанность атомов. Но у этого метода есть свои проблемы. Он очень жестко определяется свойствами конденсата Бозе-Эйнштейна, который чрезвычайно сложно получить в лаборатории. Более того, КБЭ обладает достаточно необычными свойствами и в некоторых отношениях ведет себя как один гигантский атом. Необычные квантовые эффекты, которые можно наблюдать только на атомном уровне, в КБЭ в принципе можно увидеть невооруженным глазом. Когда-то это считалось невозможным.

Ближайшее практическое приложение КБЭ — создание атомных лазеров. Разумеется, основой лазера служит когерентный пучок фотонов, которые колеблются в унисон. Но ведь КБЭ представляет собой набор атомов, которые тоже колеблются в унисон; отсюда возможность создать поток когерентных КБЭ-атомов. Другими словами, КБЭ может стать основой для устройств, аналогичных обычным лазерам: это атомные, или вещественные, лазеры, которые сделаны из КБЭ-атомов. В настоящее время лазеры имеют широчайшее применение в обычной жизни, и атомные лазеры, возможно, войдут в нашу жизнь не менее глубоко. Но так как КБЭ может существовать только при температурах, едва-едва превышающих абсолютный нуль, прогресс в этой области наверняка будет медленным, хотя и уверенным.

Можем ли мы сказать с учетом всего уже достигнутого, когда мы сами получим возможность телепортироваться? В ближайшие годы физики надеются телепортировать сложные молекулы. После этого несколько десятилетий наверняка уйдет на разработку способа телепортации ДНК или, может быть, какого-нибудь вируса. Против телепортации человека — в точности как в фантастических фильмах — также нет никаких принципиальных возражений, но технические проблемы, которые надо преодолеть на пути к подобному достижению, поражают воображение. Пока для того, чтобы добиться когерентности крошечных световых фотонов и отдельных атомов, требуются усилия лучших физических лабораторий мира. О квантовой когерентности с участием реальных макроскопических объектов, таких как человек, речь пока не идет и еще долго идти не будет. Скорее всего, пройдет немало столетий, прежде чем мы сможем телепортировать обычные предметы, если это вообще возможно.
Квантовые компьютеры

По существу, судьба квантовой телепортации тесно связана с судьбой проектов по разработке квантовых компьютеров. Оба направления пользуются одними и теми же законами квантовой физики и одинаковыми технологиями, поэтому между ними идет постоянный и очень активный обмен идеями. Квантовые компьютеры, возможно, когда-нибудь полностью заменят на наших столах привычные цифровые компьютеры. Более того, однажды может оказаться, что от этих компьютеров зависит будущее мировой экономики, поэтому данные технологии представляют громадный коммерческий интерес. Новые технологии, созданные на базе квантовых технологий, придут на смену современным технологиям, и Силиконовая долина, вполне возможно, уйдет в прошлое вслед за столицами американского автопрома.

Обычные компьютеры считают в двоичной системе счисления и оперируют только нулями и единицами, которые называются битами. Но квантовые компьютеры гораздо мощнее. Они могут оперировать кубитами, или квантовыми битами, которые могут принимать и промежуточные между 0 и 1 значения. Представьте себе атом, помещенный в магнитное поле. Он крутится как волчок, и ось его вращения может указывать вверх или вниз. Здравый смысл говорит нам, что спин атома может быть направлен вверх или вниз, но никак не в обе стороны одновременно. Но в странном мире квантов атом описывается как сумма обоих этих состояний, как суперпозиция атома с положительным спином и атома с отрицательным спином. В нечеловеческом мире квантов каждый объект описывается как сумма всех возможных состояний. (Если вы хотите дать квантовое описание крупного объекта, например кошки, это означает, что вам придется сложить волновую функцию живой кошки с волновой функцией мертвой кошки, так что в результате получится кошка, одновременно мертвая и живая, о чем я расскажу подробнее в главе 13.)

Теперь представьте себе цепочку атомов, выстроенных в магнитном поле, так что спины всех атомов направлены в одну сторону. Если осветить эту цепочку атомов лазерным лучом, то луч отразится от атомов, перевернув при этом оси вращения некоторых из них. Измерив разницу между первоначальным и отраженным лазерными лучами, мы получим результат сложной квантовой вычислительной операции, которая представляет собой переворот осей вращения множества атомов.

Квантовые компьютеры еще не вышли из младенческого возраста. Максимум, что удалось пока посчитать квантовому вычислителю, — это 3 х 5 = 15. Едва ли можно считать это серьезной заявкой на вытеснение сегодняшних суперкомпьютеров. У квантовой телепортации и квантовых компьютеров один и тот же фатальный недостаток: необходимость поддерживать когерентность большого количества атомов. Решение этой проблемы привело бы к громадному рывку вперед в обеих областях.

ЦРУ и другие секретные организации проявляют к квантовым компьютерам активный интерес. Основой для большинства секретных кодов мира служит «ключ», представляющий собой очень большое целое число, который необходимо разложить на простые сомножители. И если ключ представляет собой произведение двух стозначных чисел, то цифровому компьютеру может потребоваться больше ста лет, чтобы найти эти два сомножителя, не имея никаких дополнительных данных. На данный момент такие коды можно считать практически не поддающимися взлому.

Но в 1994 г. Питер Шор из Лаборатории Белла показал, что для квантового компьютера разложение на множители было бы детской игрой. Понятно, что это открытие мгновенно подогрело интерес разведывательного сообщества. В принципе, квантовый компьютер способен был бы взломать все коды в мире и полностью разрушить систему безопасности современных компьютеров. Первая страна, которой удастся создать подобную систему, может рассчитывать на проникновение в глубочайшие тайны других стран и организаций.

Некоторые ученые предполагают, что в будущем мировая экономика может оказаться полностью зависимой от квантовых компьютеров. Ожидается, что цифровые компьютеры на базе кремниевых технологий достигнут физического предела — в смысле роста вычислительной мощности—где-то после 2020 г. И чтобы техника продолжала развиваться, потребуется, скорее всего, создавать новые, еще более мощные семейства вычислительной техники. Другие ученые надеются воспроизвести при помощи квантовых компьютеров мощь человеческого мозга.

Таким образом, ставки чрезвычайно высоки. Если удастся решить проблему когерентности, то нам, возможно, покорится не только телепортация. Не исключено, что квантовые компьютеры дадут нам возможность развивать самые разные технологии в неизвестных пока и слабо предсказуемых направлениях. Прорыв в этой области настолько важен, что в следующих главах я еще не раз вернусь к обсуждению данной темы.

Как я уже указывал, когерентность чрезвычайно трудно поддерживать в лаборатория. Даже самая слабая случайная вибрация способна нарушить когерентность двух атомов и свести на нет все усилия. Сегодня нам с трудом удается поддерживать когерентность хотя бы горстки атомов. Атомы, первоначально находившиеся «в фазе», начинают терять синхронность уже через несколько наносекунд; в лучшем случае они удерживаются в этом состоянии до секунды. Телепортацию необходимо проводить очень быстро, прежде чем атомы начнут терять синхронность, и это еще один ограничивающий фактор для квантовых вычислений и телепортации.

Несмотря на все препятствия, Дэвид Дойч из Оксфордского университета уверен, что эти проблемы можно решить: «Если повезет, при помощи последних теоретических достижений на создание [квантового компьютера] потребуется, возможно, куда меньше 50 лет... Это был бы совершенно новый способ обуздания природы».

Чтобы построить реальный квантовый компьютер, нам потребуется от сотен до миллионов атомов, колеблющихся в унисон; на сегодняшний день нам еще далеко до подобных достижений. Сейчас телепортация капитана Кирка была бы астрономически трудным делом. Для этого нам пришлось бы установить квантовую запутанность с копией-близнецом капитана Кирка. Даже с учетом нанотехнологий и новейших компьютеров трудно представить себе, как это можно сделать на практике.

Итак, на атомном уровне телепортация уже существует, и вполне возможно, что уже в течение нескольких ближайших десятилетий мы научимся телепортировать сложные и даже органические молекулы. А вот телепортации макроскопических объектов после этого придется ждать значительно дольше — от нескольких десятилетий до нескольких столетий, а то и больше, если эта процедура вообще возможна.

Поэтому телепортацию сложных молекул, может быть, даже вирусов или живых клеток, следует отнести к I классу невозможности, что означает: решения этой задачи следует ожидать еще в настоящем столетии. Но телепортация человека, хотя и не противоречит законам физики, вряд ли будет реализована в ближайшее время. На решение этой задачи — при условии, что решение вообще существует, — может потребоваться еще не одна сотня лет. Поэтому я бы отнес телепортацию такого рода ко II классу невозможности.
Ком-ев: 0 Автор: admin
Вы читаете новость Физика невозможного - Телепортация если Вам понравилась статья Физика невозможного - Телепортация, прокоментируйте ее.
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию

Добавьте комментарий